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Systems of independent active particles embedded into a fluctuating environment are relevant to many
areas of soft-matter science. We use a minimal model of noninteracting spin-carrying Brownian particles in
a Gaussian field and show that activity-driven spin dynamics leads to patterned order. We find that the
competition between mediated interactions and active noise alone can yield such diverse behaviors as
phase transitions and microphase separation, from lamellar up to hexagonal ordering of clusters of opposite
magnetization. These rest on complex multibody interactions. We find regimes of stationary patterns,
but also dynamical regimes of relentless birth and growth of lumps of magnetization opposite of the
surrounding one. Our approach combines Monte Carlo simulations with analytical methods based on
dynamical density functional approaches.
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Active matter encompasses a broad class of physical
systems, ranging from animal flocks [1–4], artificial self-
propelled particles [5,6], and bacteria [7] to molecular
motors [8], and pumping [9,10] or multistate particles such
as proteins [11]. While the former share the ability to
extract energy from their environment and to convert it into
directed motion, the latter can change conformation and
exert active forces upon their surrounding medium (actin
filaments, cell membrane). Particles that deform a corre-
lated elastic medium experience field-mediated interactions
with a fluctuation-induced component [12,13], as illus-
trated in Fig. 1. Mediated interactions occur, for instance,
between interfaces, colloids, or proteins in soft-matter
media such as critical binary mixtures [14,15], liquid
crystals [16,17], capillary interfaces [18,19], and biomem-
branes [20–24], including in nonequilibrium settings [25].
An early approach to the question of why and how active

particles, e.g., proteins in cell membranes, self-organize
appeared in [11,26,27]. In a parallel series of works on
reactive two-state particle systems, spinodal decomposition
coupled to active flips between the states has been shown to
lead to a wealth of complex patterns. These have been
described in [28–33]. A common feature to these approaches,
necessary for the active flips to produce nontrivial patterns, is
the requirement to start from directly interacting objects,
either by assuming two-body interactions or in a coarse-
grained form by describing these in terms of an ad hocCahn-
Hilliard field.
In this Letter, we show that the emergence of activity-

driven patterns can arise from purely field-mediated inter-
actions, in the absence of any direct interactions between
the particles. The nature of the coupling between the
particles and the field is essential, as the existence of
nonequilibrium phase transitions completely rests on the

physics governing the coupling. Furthermore, out of
equilibrium, the coupling of particles to a field cannot
be interpreted as effective direct interactions between
particles. We concentrate on systems whose only non-
equilibrium character resides in the active switching of the
particles between two states coupling differently to the
medium’s field. Such systems can be found both in
biophysics and in soft matter: adenosine triphosphate
(ATP)-binding cassette transporters, for instance, are
ATP-controlled transmembrane proteins that actively
locally remodel the membrane shape [34,35]. Other exam-
ples include pH-driven KcsA potassium channel proteins

FIG. 1. Two particles (up spins) coupled to a fluctuating field
(surface plot), favoring some value ϕ0 of the field. (Inset)
Equilibrium average force as a function of the average particle
separation, for the Hamiltonian described in the text. One particle
is held fixed and the other one is tethered to a strong harmonic
trap. (Symbols) Results of the numeric simulation (with incerti-
tude). (Solid line) Analytical force deriving fromUðRÞ in the text.
(Parameters) r ¼ 0.01, ϕ0 ¼ 8, B ¼ 1, and μ ¼ 0.05.
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that are believed to couple to the membrane thickness [36],
laser-induced virtual colloids in nematic liquid crystals
[37], or optically switchable bistable colloids in chiral
liquid crystals [38]. We do not rely on a simplified field–
particle-density coupling. We treat the field-particle inter-
actions at the microscopic level (background illustration in
Fig. 1), in order to capture multibody contributions and
Casimir-like effects.
In order to investigate such phenomena, we have striven

to build up a model relying on the minimal necessary
ingredients: two populations of independent diffusing Ising
particles, actively switching between their two states and
interacting (quadratically) with a background Gaussian
field, make up our model system. We refer to these particles
as active switching field interacting particles (ASFIPs). The
complexity of this system rests on the active nature of the
particles, but also on the dynamics of the field-mediated
interactions. We treat the dynamics of each particle and
that of the field by equilibrium Langevin equations. The
questions we ask are the following: (i) Are induced
interactions coupled to activity sufficient to generate
emerging cooperative phenomena? (ii) What is the role
of activity (in as much as it drives us away from equilib-
rium) in generating complex patterns? (iii) What is the role
of multibody interactions and of Casimir-like forces in the
states of matter that we observe?
We consider N noninteracting particles at positions rkðtÞ,

1 ≤ k ≤ N, embedded in a medium whose elasticity is
described by a scalar Gaussian field ϕðx; tÞ. Our field ϕ
might refer to a biomembrane thickness [21,23] or internal
lipid composition [39]. It may also refer to the shape of a
biomembrane [20,22] or to that of an interface under
gravity [18,19]. While all these systems are well described
by Gaussian fluctuating fields, the specifics of the
Hamiltonian is model dependent. We choose the simplest
model, with energy

H0 ¼
Z

d2x
�
r
2
ϕ2 þ c

2
ð∇ϕÞ2

�
: ð1Þ

To model particles that can be in two states, we attach a spin
variable Sk ¼ �1 to each particle. The underlying picture
we have in mind is that of protein inclusions changing
conformation through external chemical activity [40]. The
particle-field coupling is a key ingredient; we take

Hint ¼
XN
k¼1

B
2
½ϕðrkÞ − Skϕ0�2: ð2Þ

The effect of this interaction is to adjust locally the field to a
spin-dependent amplitude �ϕ0, with a strength governed
by the stiffness coefficient B. We draw the reader’s
attention to the quadratic nature of Hint. Linear couplings
in the field are quite unrealistic as they miss multibody and
fluctuation-induced interactions due to linear superposition

of the deformation field. By contrast, a quadratic coupling
constrains the field at the particle location, which prevents
linear superposition and generates multibody interactions
and Casimir-like forces. We do not wish to discard such
ingredients that exist in real systems. The total energy
becomes H ¼ H0 þHint. We purposely omit excluded
volume or any other kind of direct interaction, which
allows us to witness field-induced phenomena only. Note
that, depending on the physical context, a coupling involv-
ing higher derivatives of the field could be considered
(e.g., for curvature-inducing proteins).
We endow ϕ with a purely relaxational dynamics

satisfying detailed balance

∂tϕðx; tÞ ¼ −Γ
δH

δϕðx; tÞ þ
ffiffiffiffiffiffiffiffiffi
2ΓT

p
ξðx; tÞ; ð3Þ

where T is the temperature in energy units, Γ is the field
mobility, and ξðx; tÞ is a Gaussian white noise. Particles
diffuse according to equilibrium overdamped Langevin
equations

drk
dt

¼ −μ
∂H
∂rk þ

ffiffiffiffiffiffiffiffi
2μT

p
ηkðtÞ; ð4Þ

where μ is a mobility coefficient (assumed to be spin and
field independent), and the ηkðtÞ’s are independent
Gaussian white noises. We use the simplifying assumption
that ηk and ξ are independent (as is generic in soft matter,
see, e.g., Ref. [10] for proteins in biomembranes).
Finally, the out-of-equilibrium dynamics arises from the

internal degree of freedom of the particles. Each particle
flips through the action of an external energy source (e.g.,
photons, chemical reactions), with fixed rates

Sk ¼ −1⇌
α

γ
Sk ¼ þ1 ðASFIPÞ: ð5Þ

This is the one process breaking detailed balance for
ASFIPs due to the coupling with the field and particle
dynamics.
Since we want to understand how our system behaves

exactly, taking into account detailed out-of-equilibrium
mediated interactions and multibody and fluctuation-
induced effects without relying on approximate analytical
methods, we first perform Monte Carlo simulations. We
discretize our equations on a lattice with spacing a, with
the normalization a ¼ T ¼ Γ ¼ c ¼ 1 (see Supplemental
Material, Sec. I [41]). The remaining parameters are r,
fixing the field’s correlation length r−1=2, B the stiffness of
the spin-field coupling, ϕ0 the targeted field, and the
dynamical parameters μ, α, and γ, all scaled by the field’s
mobility.
We implement discrete-time Monte Carlo simulations

on a two-dimensional (2D) square lattice of size L × L
with periodic boundary conditions, as detailed in the
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Supplemental Material (Sec. II) [41]. The field is defined
on the lattice sites and the particles move from site to
adjacent site. Between times t and tþ Δt, particles can hop,
or flip spin, or stay on the same site. To take into account
the relative dynamics of the particles and the field, we
implement a tower sampling algorithm [42] instead of a
Metropolis one.
In order to characterize the field-mediated interaction in

equilibrium, we first study the force exchanged by two
particles a distance R apart in the manner described in
Fig. 1 (or Sec. III in Supplemental Material for a precise
description [41]). The effective potential UðRÞ between
these two particles can be derived (see Supplemental
Material) from a field-theoretic calculation. As shown in
Fig. 1, the force is well fitted by U0ðRÞ, which confirms the
validity of our Monte Carlo simulation. The force is
attractive for equal spins and decays typically over the
field correlation length. We found that for R ≥ 1 and
ϕ0 ≳ 3 the fluctuation-induced component of the force is
negligible with respect to the elastic component, but this
does not mean that it must be so out of equilibrium.
Actually, the standard deviation of the force, which has a
component coming from the Langevin force on the particle
and another coming from the fluctuations of the field, is
much larger than its average. Note that, whereas in
equilibrium the field samples thermally all of its configu-
rations (even when the particles move), in the out-of-
equilibrium case, the dynamics of the field could yield
memory effects with important consequences.
Before we embark into a full description of the out-of-

equilibrium ASFIPs, we wish to introduce their equilibrium
counterpart, for future comparison purposes. In equilib-
rium, switching field interacting particles (SFIPs) have
transition rates ∝ exp ð�wkÞ with wk ¼ Bϕ0ϕðrkÞ half the
energy variation in a spin flip. Such particles experience
equilibrium field-mediated interactions and flips, while
they diffuse on the lattice. Let N be the total number of
particles and ρ0 ¼ N=L2. At fixed r and ϕ0, we increase the
coupling strength B. We observe first a paramagnetic-
ferromagnetic phase transition [Fig. 2(a)], then a phase
separation into a dense ferromagnetic fluid coexisting with
a paramagnetic gas [Fig. 2(b)]. These states obviously do
not depend on the dynamical parameter μ. We characterize
the magnetization of each homogeneous phase by the order
parameter ψ ¼ hρþ − ρ−i=hρi, where ρ� is the density of
particles with �1 spins and ρ ¼ ρþ þ ρ−, and we find that
the paramagnetic-ferromagnetic phase transition is com-
patible with a continuous one [Fig. 2(a), inset].
Since SFIPs are in equilibrium, we can rely on thermo-

dynamics to study their behavior. The mean-field energy
density naturally deriving from H is

fMF ¼
r
2
ϕ2 þ B

2
ρþðϕ − ϕ0Þ2 þ

B
2
ðρ − ρþÞðϕþ ϕ0Þ2

þ ρþ ln ρþ þ ðρ − ρþÞ lnðρ − ρþÞ: ð6Þ

Since ρ is the only conserved quantity, we minimize fMF
with respect to ϕ and ρþ, which yields an energy density
f0MFðρÞ and ϕ ¼ Bϕ0ð2ρþ − ρÞ=ðrþ BρÞ with either ρþ ¼
ρ− ¼ ρ=2 (paramagnetic phase) or ρþ ≠ ρ− (ferromagnetic
phase). At low values of B, the system is uniform and there
is a continuous paramagnetic-ferromagnetic transition at

BðMFÞ
c ¼ ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4rϕ2
0=ρ0

p Þ=ð2ϕ2
0Þ. At higher values of

B, we obtain, through the double tangent construction on
f0MFðρÞ, a phase separation between a low density para-
magnetic phase and a high density ferromagnetic phase.
These mean-field predictions correspond to the continuous
lines of Fig. 2(c), while the results of the Monte Carlo
simulations are indicated by the dashed lines. We have
checked that the agreement is all the better as we are
working at large ϕ0 or low T.
We now return to our original nonequilibrium ASFIPs.

The phase diagram of ASFIPs undergoing symmetric flips
(α ¼ γ) is shown in Fig. 2(d). The system is always
paramagnetic on global average, due to the imposed flips,
however, increasing B at fixed ρ0 yields first a transition
from a paramagnetic gas to ferromagnetic clusters of either

(a)

(c)

(b)

(d)

FIG. 2. (a) SFIPs in a box with periodic boundary conditions
L ¼ 150, ρ0 ¼ 0.05, r ¼ 0.01, ϕ0 ¼ 8, and B ¼ 0.07, yielding a
ferromagnetic state. Red (blue) dots indicate particles with up
(down) spins. (Inset) Magnetization order parameter as a function
of B. Light orange (dark purple) symbols correspond to B
increasing (decreasing). (b) SFIPs for B ¼ 0.26 (same other
parameters) showing the coexistence of a ferromagnetic liquid
and a paramagnetic gas. (c) Phase diagram of SFIPs in terms of
total density and coupling strength for r ¼ 0.01, ϕ0 ¼ 8, and
μ ¼ 5. (Solid lines) Mean-field predictions for the paramagnetic-
ferromagnetic transition (black) and for the binodal curve of the
phase separation (green or gray). The corresponding dashed lines
are the results of the Monte Carlo simulations. (d) ASFIPs for the
same parameters and α ¼ γ ¼ 0.1. (Solid red line) Mean-field
prediction for the transition to a patterned phase. [Yellow (light
gray) zone] Beginning of segregation. [Orange (gray) zone]
Ferromagnetic stripes and macroscopic clusters.
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magnetizations, as illustrated in Fig. 3(a), then to a phase of
dynamical ferromagnetic stripes. A typical snapshot of the
macroscopic stripes is shown in Fig. 3(c). For asymmetric
flips (e.g., α ¼ 3γ), we observe a dynamical hexagonal
pattern of clusters [Fig. 3(b)]. These clusters are formed by
the particles with the higher flip rate.
Mechanism.—Think of a system prepared with all spins

up. Allow for activity to start flipping spins. Down spins
will locally create a field depression that will diffuse around
and harvest similar down spins. Lumps of down spins will
grow by ripening and by coalescence. Their growth is
limited by the symmetric process involving the birth of up
spin inside. This scenario will result in a local dynamical
pattern akin to microphase separation. Once in such a state,
we have computed the average fluxes of the particles and
the map of the ϕ field [Fig. 3(d)]. High (low) field regions
have a majority of spin-up (spin-down) particles. Then,
spin-up particles travel from regions of low spin-up density
to regions of high spin-up density. However, these activity-
driven fluxes never vanish, which is specific to being out
of equilibrium. Therefore, whenever a particle flips, it is
expelled by the field-mediated interactions towards the
nearest region matching its updated spin. Within large
enough regions of a given magnetization, we observe the
systematic nucleation and growth of aforementioned lumps
of opposite magnetization [e.g., small visible blue islands
in Fig. 3(b) or red and blue ones in Fig. 3(c)], as illustrated
by the videos in the Supplemental Material (Sec. V) [41].

What is the importance of fluctuation-induced interactions
and multibody effects in the ASFIP system? If we turn off
the field noise ξðx; tÞ (while keeping the dynamics on the
particles unchanged), we observe that particle segregation
and pattern formation occur as soon as B exceeds the mean-
field threshold [solid red line in Fig. 2(d)]. Thermal
fluctuations tend to destroy patterns and fluctuation-induced
forces are too weak to play any pattern-favoring role. In
order to investigate multibody effects, we have also replaced
the quadratic coupling of Eq. (2) with a linear coupling
adjusted to yield, up to a very good approximation, the same
two-body field-mediated interaction (see Supplemental
Material [41]). This results in the condensation of the
particles on a unique site for SFIPs and in the absence of
activity-driven patterns for ASFIPs. Multibody interactions
are thus essential. We have checked that adding a hard-core
repulsion, in the quadratic coupling case, has almost no
effect on the phase diagram, indicating that modest short-
range interactions are irrelevant in our system.
Let us rationalize our findings on the phase diagram with

a dynamical mean-field approach. Since ASFIPs diffuse by
means of overdamped Langevin equations, we implement a
Dean-Kawasaki [43,44] approach in the noiseless limit.
The evolution equations then read ∂tρ

� þ ∇ · j� ¼ 0 with
j� ¼ −μρ�∇ð∂fMF=∂ρ�Þ. Taking spin exchange into
account, we arrive at the evolution equations

∂tρ
� ¼ μ∇2ρ� þ μB∇ · ½ρ�ðϕ ∓ ϕ0Þ∇ϕ� � αρ− ∓ γρþ;

∂tϕ ¼ ∇2ϕ − rϕ − Bρþðϕ − ϕ0Þ − Bρ−ðϕþ ϕ0Þ: ð7Þ

Linear stability analysis (LSA) shows that above a thresh-
old in B the stationary and homogeneous solution
[ρþs ¼ ρ0α=ðαþ γÞ, ρ−s ¼ ρ0γ=ðαþ γÞ, and ϕs ¼
Bϕ0ðρþs − ρ−s Þ=ðrþ Bρ0Þ] is no longer stable, indicating
the onset of a patterned phase. For symmetric flips, γ ¼ α,

this threshold reads BðMFÞ
a ¼ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4rϕ2

0=ρ0þ4ϕ0s
p

þ
2ϕ0sÞ=ð2ϕ2

0Þ, where s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2α=ðμρ0Þ

p
. The agreement with

the results of the Monte Carlo simulations is satisfying
[Fig. 2(d)].

In dimensionful form, BðMFÞ
a turns out to be independent

of the field mobility Γ. We have checked this property in the
Monte Carlo simulations and found indeed that varying Γ
over 5 orders of magnitude has no effect on the phase
diagram. The timescales involved in the pattern formation,
however, depend on Γ. In addition, LSA yields an interval
of wave vectors over which the homogeneous solution
becomes unstable. The pattern sizes we observe are
consistent with the LSA predictions, including the fact
that varying dynamical parameters Γ or μ and α, while
keeping s constant, does not alter their size. We also found
that increasing the particles’ mobility μ (while keeping all
other parameters fixed) enlarges the domain where patterns
are stable in the phase diagram. Furthermore, LSA con-
firms that patterns are specific to out of equilibrium, since

FIG. 3. Snapshots of the patterns created by ASFIPs. The
parameters are r ¼ 0.01, ϕ0 ¼ 8. Red (blue) dots indicate
particles with up (down) spins. (a) Square phase obtained for
symmetric flips (B ¼ 0.26, ρ0 ¼ 0.1, μ ¼ 2.5, γ ¼ α ¼ 0.005,
L ¼ 180). (b) Hexagonal phase of clusters (B ¼ 0.15, ρ0 ¼ 0.4,
μ ¼ 5.0, α ¼ 0.02, γ ¼ α=3, L ¼ 160). (c) Striped phase ob-
tained for symmetric flips (B ¼ 0.15, ρ0 ¼ 0.4, μ ¼ 5.0,
γ ¼ α ¼ 0.02, L ¼ 160). (d) The corresponding ϕ field map
of (c) and the time average of the fluxes of spin-up particles.
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sending s → 0 yields opens up the instability interval down
to zero wave vectors, ending up with a more conventional
coarsening of the binary mixture in that regime.
We are now in a position to summarize the answers to

our original questions. Starting from a microscopic model
where noninteracting particles are coupled to a Gaussian
field, we have proved that field-mediated interactions
combined with activity can generate a wealth of new
emerging cooperative phenomena. This is relevant for
soft-matter systems in which interactions are mostly
indirect and field mediated. In our system, it is the presence
of activity that drives complex patterns of particle clusters
by a continuous tossing in and out of diffusing particles.
The quadratic coupling that we have used captures both
multibody and fluctuation-induced interactions. While the
former is of paramount relevance, the latter is entirely
dominated by thermal fluctuations and can be neglected.
We see several directions along which we could expand our
findings. From a theoretical standpoint, we wish to inves-
tigate the effect of varying the details of the correlator
(membranes will feature higher derivatives, for instance).
Similarly, the particle-field coupling may also involve
higher derivatives depending on physical context. We have
further assumed protein diffusion to be spin independent, a
simplifying assumption that possibly conceals some activ-
ity feedback. Exploring the consequences of hydrodynamic
effects is also of great relevance. Finally, it would be
interesting to investigate such emerging phenomena in
experimental systems of active particles, even in athermal
macroscopic systems where activity alone might suffice.

We thank Luca Peliti and Julien Tailleur for useful
discussions.
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